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Abstract

We derive a tensorial formula for a fourth-order conformally invariant differential operator on
conformal four-manifolds. This operator is applied to algebraic Weyl tensor densities of a certain
conformal weight, and takes its values in algebraic Weyl tensor densities of another weight. For
oriented manifolds, this operator reverses duality. For example, in the Riemannian case, it takes
self-dual to anti-self-dual tensors and vice versa. We also examine the place that this operator
occupies in known results on the classification of conformally invariant operators, and we examine
some related operators. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent work on anomalies in conformal field theory[5] has revealed a potentially im-
portant role for a certain conformally invariant linear differential operatorD in dimension
4. This operator has order 4, and acts on tensor-densities of the symmetry and trace type
of the Weyl conformal curvature tensor. The output of this operator is a tensor-density of
a different conformal weight, but also of the symmetry and trace type of the Weyl tensor.
Under this operator, self-dual and anti-self-dual Weyl tensor densities are interchanged, in
a way reminiscent of the chirality switch effected by the Dirac operator, and the duality
switch effected by the middle-form-density operatorδd − dδ + Ricci correction of[1a].
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The existence of this operator is probably first due to Eastwood and Rice[8]. Their work
constructed a very large class of invariant differential operators on conformal four-manifolds,
and in the process, pioneered an approach now known as thecurved translation principle.
This technique has since been developed significantly, and for conformal manifolds of any
dimensionn ≥ 3, many differential operator existence questions can be settled by con-
sulting [10a]. (For a recent complete treatment of large classes of invariant operators in
the setting of general parabolic geometries, see[4].) However, even given the existence of
a particular operator, producing a useful and explicit formula is sometimes a non-trivial
matter. In[12,13] formulas for the operatorD, as well as many of the related operators
discussed below, are obtained by a rather different construction which uses ideas from a
twistor theory. In fact, there are universal formulas which yieldD and many of its rel-
atives; a principle of this type is formulated inTheorem 1, which may be viewed as an
elementary exposition of a class of special cases of the general results of[12,13]. We
discuss the universal formulas and general results inSection 5. More recently, universal
formulas along these lines have been recovered in an even more general setting in[3], this
time via a construction which explicitly uses the normal Cartan connection associated to a
parabolic geometry.

In Corollary 3, we take the Weyl tensor density operator that motivated the present work
and make it even more readily usable, by giving a formula for it in standard abstract index
notation. Essentially, this explicitly accomplishes the projections involved in formulas like
that of ourTheorem 1.

In the construction leading up toTheorem 1, we show how formulas for high-order
invariant operators can be built using information about first-order invariant operators; in
this case theStein–Weiss operators or generalized gradients of [11,18].

2. Preliminaries

We shall work for now in the setting of Riemannian conformal geometry. Many of our
ultimate conclusions about the existence of invariant operators on tensor-densities and their
abstract index formulas will, however, be independent of the metric signature. We shall take
stock of this inSection 5.

Natural irreducible tensor bundles in orientedn-dimensional Riemannian conformal ge-
ometry are labeled by a dominant SO(n)-weightλ and a conformal weightw; we shall write
such labels in the form [w|λ]. The parameterw is a real number, thedensity weight, andλ
is an
 := [n/2]-tuple of integers satisfying thedominance condition

λ1 ≥ λ2 ≥ · · · ≥ |λ
| (neven), λ1 ≥ λ2 ≥ · · · ≥ λ
 ≥ 0 (nodd). (1)

Another important label is therho-shift of [w|λ]:

[[ w̃|λ̃]] = [[w + 1
2n|λ̃+ ρso(n)]] , (2)

where

ρso(n) = (1
2(n− 2), 1

2(n− 4), . . . , 1
2(n− 2
)).
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We use the extra set of brackets inEq. (2)advisedly, as a reminder of whether we have
or have not rho-shifted. The string to the right of the bar in a rho-shifted label isstrictly
dominant, that is the≥ signs inEq. (1)are replaced by> signs.

Let V[w|λ] or V[[ w̃|λ̃]] denote the bundle with the given label. Then, for example, the
conformal Laplacian (Yamabe operator)L = −∇a∇a + (n − 2)R/(4(n − 1)) carries
V[(2−n)/2|0, . . . ,0] toV[(−2−n)/2|0, . . . ,0] in a conformally invariant way: changing
the metricg to ĝ = Ω2g, whereΩ is a positive smooth function, has no effect on the
operator. If we force the operator to act between bundles of the “wrong” density weights,
we get an operator which isconformally covariant instead ofinvariant. For example, if we
view the Yamabe operator as carryingV[0|0, . . . ,0] to V[0|0, . . . ,0], then replacement of
g by ĝ gives an operator

L̂f = Ω−(n+2)/2L(Ω(n−2)/2f ) (3)

on smooth functionsf . The concept of conformally covariance (as opposed to invariance)
is useful, for example, when one wishes to have a spectrum.

If a metric is specified, i.e. if we are in the setting of Riemannian geometry, irreducible
tensor bundles are parameterized simply by theλ above. We shall denote byV(λ) the bundle
with the given (non-rho-shifted) label.

There is a chance of having a conformally invariant operatorV[[w|λ]] → V[[w′|λ′]]
only if the length
+ 1 strings(w, λ) and(w′, λ′) are related by

a permutation and an even number of sign changes, neven,
a permutation and any number of sign changes, nodd.

That is, the rho-shifted weights [[w|λ]] and [[w′|λ]] must be similar under theWeyl group.
(Dually this is equivalent to the corresponding generalized Verma modules having the same
central character for the enveloping algebra of SO(n+2,C). See[10a]for further details on
this and related points here.) Even on roundSn, this is a necessary condition for a non-trivial
differential operator invariant under the group of conformal diffeomorphisms. An additional
necessary condition is that the pair [[w|λ]] and [[w′|λ′]] have one of the correct relative
placements in theBernstein–Gelfand–Gelfand diagram made from the affine Weyl orbit of
[[w|λ]].

Of the differential operators on roundSn that are invariant under the conformal group,
all are known to have invariant generalizations to arbitrarily curved manifolds, except the
longest arrows in even dimensionsn ≥ 4, i.e. operators carrying [[u|µ]] → [[−u|µ̄]],
whereu > µ1 andµ̄ = (µ1, . . . , µ
−1,−µ
) (see[10]). These generalizations need not be
unique, but they are differential operator invariants of conformal structure which evaluate
to the given (unique up to a constant factor) operator on roundSn. An example of an
even-dimensional longest arrow thatdoes generalize is thePaneitz operator V[[2|1,0]] →
V[[−2|1,0]] in dimension 4 (see[9,16,17]); or more generally[15], the GJMS operator
Pn : [[
|ρSO(n)]] → [[−
|ρSO(n)]] in even dimensionn. An example of one which does
not generalize[14] is the operator with principal part∆3 on scalar densities inS4; here the
labels are [[3|1,0]] → [[−3|1,0]].
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3. A class of fourth-order conformally invariant operators

If λ is an
-tuple, letλi be itsith entry. (Recall that
 is the integer [n/2].) Let ei be the

-tuple with 1 in theith slot and 0 elsewhere. Ifλ̃±2ei are strictly dominant SO(n)-weights,
then so arẽλ± ei andλ̃. Suppose we try to approximate the conformally invariant operator
which carries

V[[−(λ̃i − 2)|λ̃+ 2ei ]] → V[[−(λ̃i + 2)|λ̃− 2ei ]] (4)

by composing operators

V[[−(λ̃i − 2)|λ̃+ 2ei ]]

→ V[[−(λ̃i − 1)|λ̃+ ei ]] → V[[−λ̃i |λ̃]] → V[[−(λ̃i + 1)|λ̃− ei ]]

→ V[[−(λ̃i + 2)|λ̃− 2ei ]] . (5)

This is the unique path composing four first-order Riemannian invariant differential oper-
ators. However, it is not a composition of conformally invariant operators, since it is never
the case that all five bundles involved are in the same affine Weyl orbit. However, by[11]
there are conformally invariant operators

D1 : V[[−(λ̃i + 1)|λ̃+ 2ei ]] → V[[−(λ̃i + 2)|λ̃+ ei ]] ,

D2 : V[[−λ̃i |λ̃+ ei ]] → V[[−(λ̃i + 1)|λ̃]] ,

D3 : V[[−(λ̃i − 1)|λ̃]] → V[[−λ̃i |λ̃− ei ]] ,

D4 : V[[−(λ̃i − 2)|λ̃− ei ]] → V[[−(λ̃i − 1)|λ̃− 2ei ]] . (6)

(See the next section for tensorial realizations of these operators in the case of the Weyl
tensor density problem.) In fact, these are the Stein–Weissgradients, or compressions of
the covariant derivative. For example,

D1 = Proj̃λ+ei∇|λ̃+2ei
.

An invariant operatorD : V[[w|λ̃]] → V[[w′|λ̃′]], when realized as an operator
V[[a|λ̃]] → V[[b|λ̃′]], has conformal variation

d

dε

∣∣∣∣
ε=0

De2εΥ g =: D′(Υ ) = (b − w′ − a + w)ΥD − (a − w)[D,Υ ].

For example, recallEq. (3)above. TheΥ in the operator commutator [D,Υ ] is an abbre-
viation for the multiplication operatorϕ �→ Υ ϕ.

Thus the conformal variation of the composition of the operators inEq. (6)is

(D4D3D2D1)
′(Υ ) = 3D4D3D2[D1, Υ ] +D4D3[D2, Υ ]D1 −D4[D3, Υ ]D2D1

−3[D4, Υ ]D3D2D1. (7)

One can get a differential operator of homogeneity 4 (i.e. one which is scaled byα−4 when
the metric is scaled by a constantα2) fromV(λ+ 2ei) toV(λ− 2ei) because the cotangent
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bundle is SO(n)-isomorphic toV(e1), and(⊗4V(e1))⊗V(λ+2ei) has a copy ofV(λ−2ei)
in its SO(n) decomposition. In fact, there is just a single copy, and it lives in the subbundle
E(abcd)0 ⊗ V(λ + 2ei), whereE(a1···ap)0 is the trace-free symmetric part of thepth tensor
power of the cotangent bundle. (To see how this fits into our general notation for tensors
and tensor densities, see the beginning ofSection 4.)

Note thatE(a1···ap)0 ∼=SO(n) V(pe1), and we need to drop four units in one of the entries
to get fromλ + 2ei to λ − 2ei . Thus, summands of⊗4V(e1) which are isomorphic to, for
example,V(3e1 + e2), cannot contribute. Let us say two indexed expressionsA andB are
equivalent, and writeA ∼ B, if they have the same trace-free symmetric part in their free
indices. For example,∇a∇b∇c ∼ ∇b∇a∇c andgab∇c∇d ∼ 0. In particular, if we have a
four-index expressionA which gives a differential operator fromV(λ+ 2ei) toV(λ− 2ei)
via A = ProjV(λ−2ei )A|V(λ+2ei ), thenA may be replaced by any equivalent expression
without affecting the value ofA. Applying this to the problem at hand, we get fromEq. (7)
that

(D4D3D2D1)abcd ∼ ∇a∇b∇c∇d ,

(D4D3D2D1)
′(Υ )abcd ∼ 3∇a∇b∇cΥd + ∇a∇bΥc∇d − ∇aΥb∇c∇d − 3Υa∇b∇c∇d

∼ 10Υab∇c∇d + 10Υabc∇d + 3Υabcd.

Here and below, we abbreviate∇b∇aΥ asΥab, and similarly for other strings of derivatives
of Υ . This already tells us that the compositionD4D3D2D1 is invariant under the con-
formal transformation group ofSn, since the infinitesimal conformal factors of that group
(the homogeneous coordinate functions) have vanishing trace-free symmetrized covariant
derivatives of order 2 and higher.

In dealing with conformal variation, it is often convenient to decompose the Riemann
curvature tensor into the Weyl tensorCa

bcd and a trace renormalizationPab of the Ricci
tensor:

Rabcd = Cabcd + 2gc[aPb]d + 2gd[bPa]c.

Part of the convenience ofPab derives from its conformal variational formula(Pab)
′(Υ ) =

−Υab. Together with the above, this suggests trying to correct by adding (inside the com-
pression ProjV(λ−2ei ) · |V(λ+2ei ))

10Pab∇c∇d + 10(∇aPbc)∇d + 3(∇a∇bPcd). (8)

To compute the conformal variation of this, first note that

(∇aPbc)
′(Υ ) ∼ −Υabc − 4ΥaPbc,

(∇a∇bPcd)
′(Υ ) ∼ −Υabcd − 4ΥabPcd − 10Υa∇bPcd.

In addition, the∇∇ and∇ on the right of compositions inEq. (8)may be replaced byD2D1
andD1, respectively. The new expressions are not the same, but they are equivalent. The
upshot is that the conformal variation of

∇a∇b∇c∇d + 10Pab∇c∇d + 10(∇aPbc)∇d + 3(∇a∇bPcd)

is equivalent to 18ΥabPcd. But this is equivalent to the conformal variation of−9PabPcd.
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If we wish to move in the other direction, fromV(λ− 2ei) toV(λ+ 2ei), the calculation
is similar; we just have to change a few signs.

Theorem 1. Suppose λ+2ei and λ−2ei are dominant SO(n)-weights. Then the differential
operators

ProjV(λ∓2ei )(∇a∇b∇c∇d + 10Pab∇c∇d + 10(∇aPbc)∇d

+3(∇a∇bPcd)+ 9PabPcd)|V(λ±2ei ) (9)

are conformally invariant V[∓λ̃i + 2− (n/2)|λ± 2ei ] → V[∓λ̃i − 2− (n/2)|λ∓ 2ei ]. In
particular, in dimension 4, if λ1 ≥ |λ2| + 2, then there are invariant operators V[∓(λ1 +
1)|λ1 ± 2, λ2] → V[∓(λ1 + 1) − 4|λ1 ∓ 2, λ2] and V[∓λ2|λ1, λ2 ± 2] → V[∓λ2 −
4|λ1, λ2 ∓ 2]. As a special case of this in dimension 4 (with λ = (2,0)), there are invariant
operators V[0|2,±2] → V[−4|2,∓2].

4. Tensorial realizations

Let us now consider tensorial realizations. LetE [w] be the bundle ofw-densities; this is a
realization ofV[w|0, . . . ,0]. Tensor bundles will be denoted by adorning the symbolE with
the index configuration of their sections; thus the tangent bundle isEa and the cotangent
bundle isEa . Standard symmetry type notation will also be used, as for example when we
spoke ofE(abcd)0 above, or as in the example of the exterior two-form bundleE[ab] . The tensor
product with a density bundle will be abbreviated, for example, byE[ab] [w] := E [w]⊗E[ab] .
Because the conformal metric is an element ofE(ab)[2], the raising and lowering of indices
has an effect on the weight. For example,Ea ∼=CO(n) Ea [2] ∼=CO(n) V[1|1,0, . . . ,0], and
Ea ∼=CO(n) V[−1|1,0, . . . ,0], where CO(n) denotes the extension of the structure group
SO(n) by pointwise scalings.

The Weyl tensorCa
bcd of the metric is conformally invariant, and thus is a section of

Wa
bcd, where we useW to denote curvature symmetries and the absence of traces. By the

above remarks on the tangent and cotangent bundles,Ca
bcd also lives in a copy of

V[1|1,0, . . . ,0] ⊗ (⊗3V[−1|1,0, . . . ,0]).

Thus, the Weyl tensor is a section of a direct sum of irreducibles bundles having the form
V[−2|λ]. In fact, it is a section ofV[−2|2,2,0, . . . ,0] if n ≥ 5, and toV[−2|2,2] ⊕
V[−2|2,−2] if n = 4. The two summands in dimension 4 correspond to the two dualities,
or eigenvalues of the Hodge� applied in thecd index pair; these will be denotedW±.
Algebraic Weyl tensor-densities are obtained by tensoring with density bundles. Examples
that are relevant for what follows are

W a c
b d

∼=CO(n) W
a

bcd[2] and Wabcd
∼=CO(n) W

a
bcd[−2].

The following corollary is just the last conclusion ofTheorem 1stated in these terms.

Corollary 2. If n = 4, formula (9) for λ = (2,0) gives conformally invariant operators
D± from (W±)a c

b d to (W∓)abcd.
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The following will make it clear that there is a unified tensorial formula forD+ andD−,
so that one need not actually accomplish the decomposition into self-dual and anti-self-dual
parts in order to apply the formula for the operator. That is, the tensorial formula we shall
give is really one for the operator which is, in block form,

D =
(

0 D−
D+ 0

)
. (10)

To get our tensorial realization, choose a metricg. If Qabcd is a differentio-tensorial
expression, for example,∇a∇b∇c∇d or PabPcd, andY is an algebraic Weyl tensor, we
define

(Q • Y )abcd = Q(acef)0Y
e f
b d −Q(adef)0Y

e f
b c +Q(bdef)0Y

e f
a c −Q(bcef)0Y

e f
a d .

We claim thatQ• is a non-zero SO(n)-equivariant action ofE(abcd)0 on algebraic Weyl
tensors interchanging the self-dual and anti-self-dual summands.

First note thatQ• propagates the curvature symmetries: ifY satisfies

Yabcd = Ycdab = Y[ab]cd = −Yacdb − Yadbc,

thenQ • Y behaves similarly. The statements on trace and duality follow from the fact that

V(4,0) ⊗V(2,±2) ∼=SO(4) V(2,∓2)⊕ V(3,∓1)⊕ V(4,0)

⊕V(5,±1)⊕ V(6,±2). (11)

In particular, the bundles of algebraic Weyl tensors on the right and left sides have opposite
duality. Traces ofQ • Y would need to land inV(2,0) ⊕ V(1,1) ⊕ V(1,−1) ⊕ V(0,0),
none of whose summands occur on the right inEq. (11). And in fact, it is easily computed
that theac-trace, and thus any trace, of(Q • Y )abcd vanishes.

To show thatQ• is non-zero, letξ be a one-form, and let

Xabcd = ξ(aξbξcξd)0 = ξaξbξcξd − 1
8(ξaξbgcd + ξaξcgbd + ξaξdgbc + ξbξcgad

+ξbξdgac + ξcξdgab)|ξ |2 + 1
48(gabgcd + gacgbd + gadgbc)|ξ |4,

where|ξ |2 = ξaξa . Direct calculation shows that

(X • Y )abcd(X • Y )abcd = 1
16|ξ |8Y abcdYabcd, (12)

where|ξ |2 := ξaξa . This shows thatX • Y is non-zero ifξ andY are. (This calculation is
quite special to dimension 4; in higher dimensions, the dependence onξ is not just through
|ξ |2.)

In fact, the computation ofX • Y is exactly that of the leading symbol of the operatorD

of Eq. (10), andEq. (12)shows that the leading symbol ofD∗D is |ξ |8/16. In other words,
D∗D has principal part∆4/16, where∆ = −∇a∇a .

A more concrete workout of the duality issue can be obtained by writingX• (forX as just
above) in terms of the exterior and interior multiplicationε(ξ) andι(ξ) of differential forms
by a one-formξ . Here we use the fact that an algebraic Weyl tensor density is (among other
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things) a (Λ2 ⊗Λ2)-density, and the fact that ifξ is a one-form, the Hodge� anticommutes
with ι(ξ)ε(ξ)− ε(ξ)ι(ξ).

We now have a tensorial realization of the compression ProjV(λ∓2ei ) · |V(λ±2ei ), and may
conclude the following.

Corollary 3. The operator

Ya c
b d �→ {∇(a∇c∇e∇f )0 + 10P(ac∇e∇f )0 + 10(∇(aPce)∇f )0 + 3(∇(a∇cPef)0)

+9P(acPef)0}Y e f
b d − {∇(a∇d∇e∇f )0

+10P(ad∇e∇f )0 + 10(∇(aPde)∇f )0 + 3(∇(a∇dPef)0)+ 9P(adPef)0}Y e f
b c

+{∇(b∇d∇e∇f )0 + 10P(bd∇e∇f )0 + 10(∇(bPde)∇f )0 + 3(∇(b∇dPef)0)

+9P(bdPef)0}Y e f
a c − {∇(b∇c∇e∇f )0 + 10P(bc∇e∇f )0 + 10(∇(bPce)∇f )0

+3(∇(b∇cPef)0)+ 9P(bcPef)0}Y e f
a d (13)

is conformally invariantWa c
b d toWabcd, and carries the subbundle (W±)a c

b d to (W∓)abcd.

There has also been some interest in tensorial realizations of the first-order operatorsDi

of Eq. (6). Note that by the result of Fegan[11], any SO(n)-invariant first-order operator
between irreducible SO(n)-bundles is a compression of the covariant derivative (i.e. has
the form ProjV(µ)∇|V(λ)), and “promotes” to a conformally covariant operatorV[w|λ] →
V[w− 1|µ], for a uniquew which is computable fromλ andµ. With this in mind, our task
in writing down theDi reduces to writing non-zero SO(n)-invariant first-order operators
that move between the bundles advertised.

The first may be realized as a divergence:

D1 : Yabcd �→ ηbcd = ∇aYabcd.

If we start inV(2,2ε), whereε = ±1, this lands us in the bundleV(2, ε), which has a
realization as the totally trace-free tensorsηbcd = ηb[cd] which have dualityε in the [cd]
indices, and satisfy the Bianchi-like identityηbcd + ηcdb + ηdbc = 0. Let us denote this
symmetry type (as a Riemannian bundle) byAbcd

∼=SO(n) V(2,1) ⊕ V(2,−1). We then
switch to an alternative realizationA′

abc of V(2,1) ⊕ V(2,−1) as the totally trace-free
three-tensorsη′

cab = η′
c(ab) also satisfying a Bianchi-like identity. The SO(n)-equivariant

map between the two realizations isη �→ η′, where

η′
cab := ηabc + ηbac.

(We have not bothered to normalize this map to an isometry, as we are just working up to
non-zero multiples.) Applying a divergence in the first argument, we haveD2:

η′
cab �→ αab = ∇cη′

cab;
this lands us inE(ab)0.

To get (byD3) to the bundleV(2,−ε), sayD3α = β, we first take

β ′′
cab := 2

3∇cαab − 1
3∇aαbc−1

3∇bαca−1
9(gca∇eαeb + gcb∇eαae)+ 2

9gab∇eαec.

(14)
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This lands us inA′
cab. To pick out theV(2,−ε) summand, we go to the alternate realization

Abcd:

β ′
cab = β ′′

abc − β ′′
bac. (15)

Letβcab be the(−ε)-dual part ofβ ′
cab in the [ab] indices. This process,α �→ β ′′ �→ β ′ �→ β,

is the operatorD3.
Finally, we needD4 to get us to the(−ε)-dual tensors with Weyl symmetry and trace

type. To accomplish this, we first take the map

βdab �→ Z̄cdab := ∇[cβd]ab + ∇[aβb]cd. (16)

The result of this process clearly satisfies the identitiesZ̄cdab = Z̄cd[ab] = Z̄abcd, and a
short computation shows that in addition,Z̄cdab + Z̄cabd + Z̄cbda = 0. Thus,Z̄ has curvature
symmetries. It is not, however, totally trace-free, though its double tracesZ̄ab

ab do vanish
(using the fact thatβ is totally trace-free). The tensor

Zcdab := Z̄cdab − 1
2(Z̄

e
debgca + Z̄c

e
aegdb + Z̄e

daegcb + Z̄c
e

ebgda) (17)

is totally trace-free and enjoys curvature symmetries, i.e. it has Weyl symmetry and trace
type. SinceV(1,0) ⊗ V(2,−ε) has aV(2,−2ε) summand but noV(2,2ε) summand,Z
has duality−ε.

5. Epilogue: BGG diagrams, other metric signatures, and standard operators

BGG diagrams of tensors in four-dimensional Riemannian conformal geometry are pa-
rameterized by similarity classes of integral rho-shifted weights [[a|b, c]] which are strictly
dominant after the bar. (RecallEq. (1)and the immediately following remarks.) Here we are
speaking only oftensorial BGG diagrams; to include those that depend on spin structure,
we just need to admit properly half-integral [[a|b, c]]. (See below for a discussion of how
the Dirac operator fits into this picture.)Regular BGG diagrams correspond to similarity
classes of cardinality 6, and are in one-to-one correspondence with triplesa, b, c of integers
with a > b > |c|. These appear as follows:

For example, the de Rham complex extends to a BGG diagram witha = 2, b = 1, and
c = 0. All compositions in this diagram vanish onS4, except for one linear combination
of the two compositions around the diamond; we represent this composition by the shorter
rectangular arrow. For the de Rham diagram, this surviving composition is the Maxwell
operatord�d on vector potentials, and the longest arrow is thePaneitz operator mentioned
above inSection 2.
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Singular BGG diagrams (for four-dimensional conformal geometry) correspond to simi-
larity classes of cardinality 2. Each gives rise to a single (non-zero and non-identity) operator.
If a > |c|, we have an operatorV[[a|a, c]] → V[[−a|a,−c]], and if a > c > 0, we have
the operatorsV[[c|a,±c]] → V[[−c|a,∓c]]. (In the last case the± sign parameterizes two
similarity classes.) Our operators on Weyl tensor densities,V[[2|3,±2]] → V[[−2|3,∓2]],
are of this final type. In higher even dimensionn, the cardinality of a similarity class of bun-
dles is eithern+2 (the regular case) or 2 (the singular case). A regular diagram just extends
the four-dimensional one above in the obvious way, with conformal weights decreasing as
one moves to the right.

All operators have arbitrarily curved conformally invariant generalizations, except for
some of the longest arrows in regular diagrams. For example, the Paneitz operator is con-
formally invariant in the arbitrarily curved case, but the operatorV[[3|1,0]] → V[[−3|1,0]]
is known not to have an arbitrarily curved generalization[14].

All differential operators between irreducible tensor-spinor bundles invariant under the
conformal group of roundSn are captured in BGG diagrams (when one includes long
arrows). In particular, consider homogeneous combinationsD of ∇ · · · ∇ terms whose
index combinatorics are such thatD : V(λ) → V(µ) for someλ,µ, i.e. combinations
that pass between irreducible Riemannian bundles. One might harbor the naive hope that
any such combination could be completed to a conformally invariant differential operator
by first assigning appropriate conformal weights, and then adding lower-order terms. This
must fail in general, since for a given∇ · · · ∇ expression to have any chance, it must be (in
the roundSn case) the principal part of an operator in a BGG diagram. If the expression
passes this test, it may still fail in the conformally curved case, if its position in the round
BGG was that of the longest arrow.

If we wish to speak of tensor–spinor bundles, we just need to add bundles with proper
half-integer entries to the above discussion. For example, the Dirac operator carries
V[[1/2|3/2,±1/2]] → V[[−1/2|3/2,∓1/2]], and so is much like our Weyl tensor den-
sity operators. The operatorV[[1|2,±1]] → V[[−1|2,∓1]] is the form-density operator
of [1] in the case of two-forms in four dimensions; this interchanges the two dualities:
(E±)[ab] [1] → (E∓)[ab] [−1].

The operator ofTheorem 1may occur in regular BGG diagrams. For example, one of the
simplest operators we could construct from the theorem carries scalar densities to trace-free
symmetric four-tensor densities,V[[5|1,0]] → V[[1|5,0]]; that is,E [3] → E(abcd)0[3].
This is the first arrow in the BGG diagram above witha = 5, b = 1, c = 0. In tensor
notation, the operator is

f �→ (∇(a∇b∇c∇d)0 + 10P(ab∇c∇d)0 + 10(∇(aPbc)∇d)0

+3(∇(a∇bPcd)0)+ 9P(abPcd)0)f.

We could also take trace-free symmetric four-tensor densities to scalar densities:
V[[−1|5,0]] → V[[−5|1,0]] or E(abcd)0[1] → E [−7]; this is in fact the formal adjoint
of the operator just above, and is also the final arrow in the same BGG diagram. A tensorial
realization is

ϕabcd �→ (∇a∇b∇c∇d + 10Pab∇c∇d + 10(∇aPbc)∇d

+3(∇a∇bPcd)+ 9PabPcd)ϕabcd.
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In fact, this operator is contained in a class of conformally invariant operators, the

E(a1···ak)0[k − p − n+ 1] → E(b1···bp)0[p − k − n+ 1] with k > p, (18)

that plays a featured role in the recent work of Dolan et al.[6].
For any specified operator orderp, Gover[12] provides an analogue ofTheorem 1(where

p = 4), and an elementary proof along the lines of that ofSection 3above is possible. Among
other things, this allows one to write the lower-order terms of the operators(18). Thep = 1
theorem is the result of Fegan mentioned above. The first of these involve compressing the
expressions

∇ (p = 1), ∇∇ + P (p = 2), ∇∇∇ + 4P∇ + 2(∇P) (p = 3),

∇∇∇∇ + 10P∇∇ + 10(∇P)∇ + 3(∇∇P)+ 9PP (p = 4).

Section 5 of[12] also gives the analogous expressions forp = 5,6,7. As in Theorem 1,
these same expressions turn up in other dimensions[3,13]. Things can be made to look
more symmetric if we write expressions in which terms act on everything to their right; for
example,∇4 + 4∇P∇ + 3(∇∇P + P∇∇)+ 9PP for the fourth-order operator.

Back in dimension 4, we can get a conformally invariant operator
V[[2|3,0]] → V[[0|3,±2]]; that is, from trace-free symmetric two-tensors with the in-
dex configurationαab to (W±)abcd. These operators appear in thegravitational diagram;
that is, the regular four-dimensional BGG diagram witha = 3, b = 2, andc = 0, and
may be interpreted as linearized Weyl curvature operators applicable to a trace-free metric
perturbation[2].

In fact, the index combinatorics are given above inEqs. (14)–(17), and the operators are
the self-dual and anti-self-dual projections of the expression (settingJ := Pa

a):

αab �→ αac|(bd) − αad|(bc) − αbc|(ad) + αbd|(ac) + 1
2gac(−αbd|ee + αb

e |(de) + αd
e |(be))

−1
2gad(−αbc|ee + αb

e|(ce) + αc
e |(be))− 1

2gbc(−αad|ee + αa
e |(de) + αd

e |(ae))

+1
2gbd(−αac|ee + αa

e|(ce) + αc
e |(ae))+ 1

3(gadgbc − gacgbd)α
ef|ef + Pbdαac

−Pbcαad − Padαbc + Pacαbd + 1
2gac(−Jαbd + Pdeαb

e + Pbeαd
e)

−1
2gad(−Jαbc + Pceαb

e + Pbeαc
e)− 1

2gbc(−Jαad + Pdeαa
e + Paeαd

e)

+1
2gbd(−Jαac + Pceαa

e + Paeαc
e)+ 1

3(gadgbc − gacgbd)Pefα
ef.

Going the other way, we can get operatorsV[[0|3,±2]] → V[[−2|3,0]] by

Yabcd �→ ∇b∇dYabcd + PbdYabcd.

Recalling the discussion ofSection 4, the self-dual and anti-self-dual parts of the Weyl
tensor of the conformal structure live inV[−2|2,±2] = V[[0|3,±2]], so these operators
may be applied to(C±)abcd. The result of applying to the full Weyl tensor is called theBach
tensor:

Bac := ∇b∇dCa
bcd + PbdCa

bcd. (19)

In fact, by the uniqueness of the Bach tensor as a natural conformally invariant section
of E(ab)0[−2] in dimension 4, together with the universality of the calculation and the



294 T. Branson, A.R. Gover / Journal of Geometry and Physics 42 (2002) 283–295

possibility of orientation reversal, we must recover(1/2)B upon application of the above
operator to either ofC±.

There is also an interesting second-order operator on Weyl tensor densities, developed
in detail in[10]. This carriesWa

bcd[3 − (n/2)] toWa
bcd[1 − (n/2)] in general dimension

n ≥ 4. In dimension 6, it acts on Weyl tensorsWa
bcd, and is a composition of first-order

operators. Some material on this operator also appears in[1b, Section 3d].
Though we have proceeded throughout under the assumption of Riemannian metric sig-

nature, the question of conformal invariance of abstract index tensor expressions is signature
independent. Thus, we also have a result, in dimension 4, for Lorentzian and signature(2,2)
conformal structures. One only needs to note that the self-dual versus anti-self-dual split
becomes, for Lorentz signature, an

√−1-dual versus−√−1-dual split. (In general, on
p-forms in dimensionn and a signature withq minus signs,�� = (−1)p(n−p)+q .)

In dimension 4 the operators inTheorem 1are essentially a subfamily of the so-called
standard operators constructed in[12] (see also[7]). There, on a complex holomorphic
conformal spin manifoldM, conformally invariant operators are proliferated as direct
images of a class of natural operators on the total space of the bundle of null directions of
M. Once the operators are constructed in this way it is clear that the same formulae yield
conformally invariant operators on a real conformal four-manifold of any signature. In[12],
irreducible holomorphic bundles are described in terms of weights on Dynkin diagrams

as inO( ) and the order of a differential operatorO( ) → O( )

is the difference((d + 2e + f )/2) − ((a + 2b + c)/2). Note in particular thatDabcd
from [12] yields the formula(9). From that source we seeDabcd will yield fourth-order

conformally invariant differential operatorsO( ) → O( ),O( ) →
O( ), O( ) → O( ), O( ) → O( ), where
the integers over the uncrossed nodes must be non-negative. For integersa, b, c with a, c

non-negative, the representation corresponds to [(a+2b+c)/2|(a+c)/2, (c−a)/2]
in our current notation. Thus, these four classes of operator are, respectively, the operators
V[[ λ̃1+2|λ̃1−2, λ̃2]] → V[[ λ̃1−2|λ̃1+2, λ̃2]], V[[ λ̃2+2|λ̃1, λ̃2−2]] → V[[ λ̃2−2|λ̃1, λ̃2+
2]], V[[−λ̃2 + 2|λ̃1, λ̃2 + 2]] → V[[−λ̃2 − 2|λ̃1, λ̃2 − 2]], andV[[−λ̃1 + 2|λ̃1 + 2, λ̃2]] →
V[[−λ̃1 − 2|λ̃1 − 2, λ̃2]] of the theorem.

In other even dimensions the analogue of this construction[13] again yields all the
operators of the theorem including the formula(9), but in odd dimensions the operator is
missed whenever it occurs as the middle operator in the BGG pattern.

Acknowledgements

The authors gratefully acknowledge support from US NSF Grant no. INT-9724781.

References

[1] (a) T. Branson, Conformally covariant equations on differential forms, Commun. Partial Diff. Eqs. 7 (1982)
392–431;



T. Branson, A.R. Gover / Journal of Geometry and Physics 42 (2002) 283–295 295

(b) T. Branson, Second-order conformal covariants, Mathematical Institute Preprint Series, Vols. 2
and 3, University of Copenhagen, 1989. Archived atftp://ftp.math.uiowa.edu/pub/branson/Copenhagen/
1989/zthree.ps.

[2] T. Branson, A.R. Gover, Electromagnetism, metric deformations, ellipticity and gauge operators on conformal
4-manifolds, preprint arXive:hep-th/0111003.
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